Penalized least squares regression methods and applications to neuroimaging
نویسندگان
چکیده
منابع مشابه
Penalized least squares regression methods and applications to neuroimaging
The goals of this paper are to review the most popular methods of predictor selection in regression models, to explain why some fail when the number P of explanatory variables exceeds the number N of participants, and to discuss alternative statistical methods that can be employed in this case. We focus on penalized least squares methods in regression models, and discuss in detail two such meth...
متن کاملNonparametric regression estimation using penalized least squares
We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.
متن کاملPenalized Least Squares and Penalized Likelihood
where pλ(·) is the penalty function. Best subset selection corresponds to pλ(t) = (λ/2)I(t 6= 0). If we take pλ(t) = λ|t|, then (1.2) becomes the Lasso problem (1.1). Setting pλ(t) = at + (1 − a)|t| with 0 ≤ a ≤ 1 results in the method of elastic net. With pλ(t) = |t| for some 0 < q ≤ 2, it is called bridge regression, which includes the ridge regression as a special case when q = 2. Some penal...
متن کاملClassification using partial least squares with penalized logistic regression
MOTIVATION One important aspect of data-mining of microarray data is to discover the molecular variation among cancers. In microarray studies, the number n of samples is relatively small compared to the number p of genes per sample (usually in thousands). It is known that standard statistical methods in classification are efficient (i.e. in the present case, yield successful classifiers) partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2011
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2010.12.028